10.2 ® Point, Line, and Edge Detection 713

Combining the gradient with thresholding

The results in Fig. 10.18 show that edge detection can be made more selective
by smoothing the image prior to computing the gradient. Another approach
aimed at achieving the same basic objective is to threshold the gradient image.
For example, Fig. 10.20(a) shows the gradient image from Fig. 10.16(d) thresh-
olded, in the sense that pixels with values greater than or equal to 33% of the
maximum value of the gradient image are shown in white, while pixels
below the threshold value are shown in black. Comparing this image with
Fig. 10.18(d), we see that there are fewer edges in the thresholded image,
and that the edges in this image are much sharper (see, for example, the edges
in the roof tile). On the other hand, numerous edges, such as the 45° line defining
the far edge of the roof, are broken in the thresholded image.

When interest lies both in highlighting the principal edges and on maintain-
ing as much connectivity as possible, it is common practice to use both
smoothing and thresholding. Figure 10.20(b) shows the result of thresholding
Fig. 10.18(d), which is the gradient of the smoothed image. This result shows a

ab

FIGURE 10.20 (a) Thresholded version of the image in Fig. 10.16(d), with the threshold
selected as 33% of the highest value in the image; this threshold was just high enough to
eliminate most of the brick edges in the gradient image. (b) Thresholded version of the
image in Fig. 10.18(d), obtained using a threshold equal to 33% of the highest value in
that image.

ab

FIGURE 10.19
Diagonal edge
detection.

(a) Result of
using the mask in
Fig. 10.15(c).

(b) Result of
using the mask in
Fig. 10.15(d). The
input image in
both cases was
Fig. 10.18(a).

The threshold used to
generate Fig. 10.20(a)
was selected so that most
of the small edges caused
by the bricks were elimi-
nated. Recall that this
was the original objective
for smoothing the image
in Fig. 10.16 prior to
computing the gradient.

714 Chapter 10 m Image Segmentation

To convince yourself that
edge detection is not in-
dependent of scale, con-
sider, for example, the
roof edge in Fig. 10.8(c).
If the scale of the image
is reduced, the edge will
appear thinner.

It is customary for

Eq. (10.2-21) to differ
from the definition of a
2-D Gaussian PDF by
the constant term
1/2mwo?. If an exact
expression is desired in a
given application, then
the multiplying constant
can be appended to the
final result in

Eq. (10.2-23).

reduced number of broken edges; for instance, compare the 45° edges in Figs.
10.20(a) and (b). Of course, edges whose intensity values were severely attenuated
due to blurring (e.g., the edges in the tile roof) are likely to be totally eliminated
by thresholding. We return to the problem of broken edges in Section 10.2.7.

B

10,2.6 More Advanced Techniques for Edge Detection

The edge-detection methods discussed in the previous section are based sim-
ply on filtering an image with one or more masks, with no provisions being
made for edge characteristics and noise content. In this section, we discuss
more advanced techniques that make an attempt to improve on simple edge-
detection methods by taking into account factors such as image noise and the
nature of edges themselves. !

The Marr-Hildreth edge detector

One of the earliest successful attempts at incorporating more sophisticated
analysis into the edge-finding process is attributed to Marr and Hildreth [1980].
Edge-detection methods in use at the time were based on using small operators
(such as the Sobel masks), as discussed in the previous section. Marr and Hildreth
argued (1) that intensity changes are not independent of image scale and so their
detection requires the use of operators of different sizes; and (2) that a sudden in-
tensity change will give rise to a peak or trough in the first derivative or, equiva-
lently, to a zero crossing in the second derivative (as we saw in Fig. 10.10).

These ideas suggest that an operator used for edge detection should have
two salient features. First and foremost, it should be a differential operator ca-
pable of computing a digital approximation of the first or second derivative at
every point in the image. Second, it should be capable of being “tuned” to act
at any desired scale, so that large operators can be used to detect blurry edges
and small operators to detect sharply focused fine detail.

Marr and Hildreth argued that the most satisfactory operator fulfilling
these conditions is the filter V2G where, as defined in Section 3.6.2, V2 %‘the
Laplacian operator, (¢%/0x* + 3*/dy®), and G is the 2-D Gaussian function

By

|
G(x,y) = ¢ (10.2:21)

with standard deviation o (sometimes o is called the space constant). To find

an expression for V°G we perform the following differentiations:

_PGxy) , PGk y)
ax? ay? | |

a -X _x2+yz 9 —y _,u,x
==l Sk el framnp L 2
x| o? ay| o?

VG(x, y)

(102-22)

10.2 ® Point, Line, and Edge Detection

Collecting terms gives the final expression:

2 + 2 - 2 2 B+y?
V’G(x, y) = [u;—i i (10.2-23)
g

This expression is called the Laplacian of a Gaussian (LoG).

Figures 10.21(a) through (c) show a 3-D plot, image, and cross section of the
negative of the LoG function (note that the zero crossings of the LoG occur at
x* +y? = 20?, which defines a circle of radius V2o centered on the origin).
Because of the shape illustrated in Fig. 10.21(a), the LoG function sometimes
is called the Mexican hat operator. Figure 10.21(d) shows a 5 X 5 mask that
approximates the shape in Fig. 10.21(a) (in practice we would use the negative
of this mask). This approximation is not unique. Its purpose is to capture the
essential shape of the LoG function; in terms of Fig. 10.21(a), this means a pos-
itive, central term surrounded by an adjacent, negative region whose values in-
crease as a function of distance from the origin, and a zero outer region. The
coefficients must sum to zero so that the response of the mask is zero in areas
of constant intensity.

Masks of arbitrary size can be generated by sampling Eq. (10.2-23) and scal-
ing the coefficients so that they sum to zero. A more effective approach for
generating a LoG filter is to sample Eq. (10.2-21) to the desired n X n size and

v2G

Zero crossing —\ /— Zero crossing

- g 0 ol sDis Lt deth: s hichh

o

= 220

715

Note the similarity be-
tween the cross section in
Fig. 10.21(c) and the
highpass filter in Fig.
4.37(d). Thus, we can ex-
pect the LoG to behave
as a highpass filter,

FIGURE 10.21

(a) Three-
dimensional plot
of the negative of
the LoG. (b)
Negative of the
LoG displayed as
an image. (c)
Cross section of
(a) showing zero
crossings.

(d) 5 X 5 mask
approximation to
the shape in (a).
The negative of
this mask would
be used in
practice.

716 Chapter 10 @ Image Segmentation

This expression is
implemented in the
spatial domain using
Eq. (3.4-2). It can be
implemented also in the
frequency domain using

Eq.(4.7-1).

then convolve' the resulting array with a Laplacian mask, such as the mask in
Fig. 10.4(a). Because convolving an image array with a mask whose coeffi-
cients sum to zero yields a result whose elements also sum to zero (see Prob-
lems 3.16 and 10.14), this approach automatically satisfies the requirement
that the sum of the LoG filter coefficients be zero. We discuss the issue of se-
lecting the size of LoG filter later in this section.

There are two fundamental ideas behind the selection of the operator V?G.
First, the Gaussian part of the operator blurs the image, thus reducing the in-
tensity of structures (including noise) at scales much smaller than o. Unlike
averaging of the form discussed in Section 3.5 and used in Fig. 10.18, the
Gaussian function is smooth in both the spatial and frequency domains (see
Section 4.8.3), and is thus less likely to introduce artifacts (e.g., ringing) not
present in the original image. The other idea concerns V2, the second deriva-
tive part of the filter. Although first derivatives can be used for detecting
abrupt changes in intensity, they are directional operators. The Laplacian, on
the other hand, has the important advantage of being isotropic (invariant to
rotation), which not only corresponds to characteristics of the human visual
system (Marr [1982]) but also responds equally to changes in intensity in any
mask direction, thus avoiding having to use multiple masks to calculate the
strongest response at any point in the image.

The Marr-Hildreth algorithm consists of convolving the LoG filter with an
input image, f(x, y),

g(x, y) = [V?G(x, y)]*f(x, y) (10.2-24)

and then finding the zero crossings of g(x, y) to determine the locations of
edges in f(x, y). Because these are linear processes, Eq. (10.2-24) can be written
also as

g(x,y) = VG(x, y)*f(x, y)] (10.2-25)

indicating that we can smooth the image first with a Gaussian filter and then
compute the Laplacian of the result. These two equations give identical results.
The Marr-Hildreth edge-detection algorithm may be summarized as follows:

1. Filter the input image with an n X n Gaussian lowpass filter obtained by
sampling Eq. (10.2-21).

2. Compute the Laplacian of the image resulting from Step 1 using, for example,
the 3 X 3 mask in Fig. 10.4(a). [Steps 1 and 2 implement Eq. (10.2-25).]

3. Find the zero crossings of the image from Step 2.

To specify the size of the Gaussian filter, recall that about 99.7% of the volume
under a 2-D Gaussian surface lies between +30 about the mean. Thus, as a rule

"The LoG is a symmetric filter, so spatial filtering using correlation or convolution yields the same result.
We use the convolution terminology here to indicate linear filtering for consistency with the literature
on this topic. Also, this gives you exposure to terminology that you will encounter in other contexts. It is
important that you keep in mind the comments made at the end of Section 3.4.2 regarding this topic.

10.2 ® Point, Line, and Edge Detection 717

of thumb, the size of an n X n LoG discrete filter should be such that » is the
smallest odd integer greater than or equal to 60. Choosing a filter mask small-
er than this will tend to “truncate” the LoG function, with the degree of trun-
cation being inversely proportional to the size of the mask; using a larger mask
would make little difference in the result.

One approach for finding the zero crossings at any pixel, p, of the filtered
image, g(x, y), is based on using a 3 X 3 neighborhood centered at p. A zero
crossing at p implies that the signs of at least two of its opposing neighboring
pixels must differ. There are four cases to test: left/right, up/down, and the two
diagonals. If the values of g(x, y) are being compared against a threshold (a
common approach), then not only must the signs of opposing neighbors be dif-
ferent, but the absolute value of their numerical difference must also exceed
the threshold before we can call p a zero-crossing pixel. We illustrate this ap-
proach in Example 10.7 below.

Zero crossings are the key feature of the Marr-Hildreth edge-detection
method. The approach discussed in the previous paragraph is attractive be-
cause of its simplicity of implementation and because it generally gives good
results. If the accuracy of the zero-crossing locations found using this method
is inadequate in a particular application, then a technique proposed by Huertas
and}ﬁedioni [1986] for finding zero crossings with subpixel accuracy can be
employed.

M Figure 10.22(a) shows the original building image used earlier and
Fig. 10.22(b) is the result of Steps 1 and 2 of the Marr-Hildreth algorithm, using
o = 4 (approximately 0.5% of the short dimension of the image) and n = 25
(the smallest odd integer greater than or equal to 60, as discussed earlier). As
in Fig. 10.5, the gray tones in this image are due to scaling. Figure 10.22(c)
shows the zero crossings obtained using the 3 X 3 neighborhood approach
discussed above with a threshold of zero. Note that all the edges form closed
loops. This so-called “spaghetti” effect is a serious drawback of this method
when a threshold value of zero is used (Problem 10.15). We avoid closed-loop
edges by using a positive threshold.

Figure 10.22(d) shows the result of using a threshold approximately equal
to 4% of the maximum value of the LoG image. Note that the majority of the
principal edges were readily detected and “irrelevant” features, such as the
edges due to the bricks and the tile roof, were filtered out. As we show in the next
section, this type of performance is virtually impossible to obtain using the
gradient-based edge-detection techniques discussed in the previous section.
Another important consequence of using zero crossings for edge detection is
that the resulting edges are 1 pixel thick. This property simplifies subsequent
stages of processing, such as edge linking. #

A procedure used sometimes to take into account the fact mentioned earlier
that intensity changes are scale dependent is to filter an image with various
values of . The resulting zero-crossings edge maps are then combined by
keeping only the edges that are common to all maps. This approach can yield

Attempting to find the
zero crossings by finding
the coordinates (x, y),
such that g(x, y) = Ois
impractical because of
noise and/or
computational
inaccuracies.

EXAMPLE 10.7:
Illustration of the
Marr-Hildreth
edge-detection
method.

718 Chapter 10 ® Image Segmentation

ab
cd

FIGURE 10.22

(a) Original image
of size 834 X 1114
pixels, with
intensity values
scaled to the range
[0,1]. (b) Results
of Steps 1 and 2 of
the Marr-Hildreth
algorithm using

o =4andn = 25.
(c) Zero crossings
of (b) using a
threshold of 0
(note the closed-
loop edges).

(d) Zero crossings
found using a
threshold equal to
4% of the
maximum value of
the image in (b).
Note the thin
edges.

The difference of
Gaussians is a highpass
filter, as discussed in
Section 4.7.4.

useful information, but, due to its complexity, it is used in practice mostly as a
design tool for selecting an appropriate value of o to use with a single filter.

Marr and Hildreth [1980] noted that it is possible to approximate the LoG
filter in Eq. (10.2-23) by a difference of Gaussians (DoG):

>

)
x*+y

1 ot (10.2-26)

| Rt
DoG(x,y) = 2ﬂa%e . e 2wl

with o > o,. Experimental results suggest that certain “channels” in the
human vision system are selective with respect to orientation and frequency,
and can be modeled using Eq. (10.2-26) with a ratio of standard deviations of
1.75:1. Marr and Hildreth suggested that using the ratio 1.6:1 preserves the
basic characteristics of these observations and also provides a closer “engi-
neering” approximation to the LoG function. To make meaningful compar-
isons between the LoG and DoG, the value of o for the LoG must be selected
as in the following equation so that the LoG and DoG have the same zero
crossings (Problem 10.17):

2P
2 01073

n| g
g = —r=ftRimnisog
ot —o3 |03

Although the zero crossings of the LoG and DoG will be the same when this
value of o is used, their amplitude scales will be different. We can make them
compatible by scaling both functions so that they have the same value at the
origin.

(10.2:27)

10.2 m Point, Line, and Edge Detection 719

RYARYZ N |V

The profiles in Figs. 10.23(a) and (b) were generated with standard deviation
ratios of 1:1.75 and 1:1.6, respectively (by convention, the curves shown are
inverted, as in Fig. 10.21). The LoG profiles are shown as solid lines while the
DoG profiles are dotted. The curves shown are intensity profiles through the
center of LoG and DoG arrays generated by sampling Eq. (10.2-23) (with
the constant in 1/27¢? in front) and Eq. (10.2-26), respectively. The amplitude
of all curves at the origin were normalized to 1. As Fig. 10.23(b) shows, the ratio
1:1.6 yielded a closer approximation between the LoG and DoG functions.

Both the LoG and the DoG filtering operations can be implemented with
1-D convolutions instead of using 2-D convolutions directly (Problem 10.19).
For an image of size M X N and a filter of size n X n, doing so reduces the
number of multiplications and additions for each convolution from being pro-
portional to n””MN for 2-D convolutions to being proportional to nMN for
1-D convolutions. This implementation difference is significant. For example, if
n = 25, a 1-D implementation will require on the order of 12 times fewer
multiplication and addition operations than using 2-D convolution.

The Canny edge detector

Although the algorithm is more complex, the performance of the Canny edge
detector (Canny [1986]) discussed in this section is superior in general to the edge
detectors discussed thus far. Canny’s approach is based on three basic objectives:

1. Low error rate. All edges should be found, and there should be no spurious
responses. That is, the edges detected must be as close as possible to the
true edges.

2. Edge points should be well localized. The edges located must be as close as
possible to the true edges. That is, the distance between a point marked as an
edge by the detector and the center of the true edge should be minimum.

3. Single edge point response. The detector should return only one point for
each true edge point. That is, the number of local maxima around the true
edge should be minimum. This means that the detector should not identify
multiple edge pixels where only a single edge point exists.

The essence of Canny’s work was in expressing the preceding three criteria
mathematically and then attempting to find optimal solutions to these formu-
lations. In general, it is difficult (or impossible) to find a closed-form solution

ab

FIGURE 10.23

(a) Negatives of the
LoG (solid) and
DoG (dotted)
profiles using a
standard deviation
ratio of 1.75:1.

(b) Profiles obtained
using a ratio of 1.6:1.

720 Chapter 10 m Image Segmentation

Recall that white noise is
noise having a frequency
spectrum that is continu-
ous and uniform over a

specified frequency band.

White Gaussian noise is
white noise in which the
distribution of amplitude
values is Gaussian.
Gaussian white noise is a
good approximation of
many real-world situa-
tions and generates
mathematically tractable
models. It has the useful
property that its values
are statistically
independent.

that satisfies all the preceding objectives. However, using numerical optimiza-
tion with 1-D step edges corrupted by additive white Gaussian noise led to the
conclusion that a good approximation® to the optimal step edge detector is the
first derivative of a Gaussian:

d -2 =% _ .
—e ¥ = —e W

=+ — (10.2-28)

Generalizing this result to 2-D involves recognizing that the 1-D approach still
applies in the direction of the edge normal (see Fig. 10.12). Because the direc-
tion of the normal is unknown beforehand, this would require applying the
1-D edge detector in all possible directions. This task can be approximated by
first smoothing the image with a circular 2-D Gaussian function, computing
the gradient of the result, and then using the gradient magnitude and direction
to estimate edge strength and direction at every point.

Let f(x, y) denote the input image and G(x, y) denote the Gaussian function:

24y

G(x,y) = e 2 (10.2-29)
We form a smoothed image, f;(x, y), by convolving G and f:
fi(x,y) = G(x, y)*f(x, y) (10.2-30)

This operation is followed by computing the gradient magnitude and direction
(angle), as discussed in Section 10.2.5:

M(x,y)=\& + & (10.2-31)
and
-1| 8
a(x,y) = tan [—j| (10.2-32)
8x

with g, = df;/dx and g, = 9f;/dy. Any of the filter mask pairs in Fig. 10.14 can
be used to obtain g, and g,. Equation (10.2-30) is implemented usingann X n
Gaussian mask whose size is discussed below. Keep in mind that M(x, y) and
a(x, y) are arrays of the same size as the image from which they are computed.

Because it is generated using the gradient, M(x, y) typically contains wide
ridges around local maxima (recall the discussion in Section 10.2.1 regarding
edges obtained using the gradient). The next step is to thin those ridges. One
approach is to use nonmaxima suppression. This can be done in several ways,
but the essence of the approach is to specify a number of discrete orientations

Canny [1986] showed that using a Gaussian approximation proved only about 20% worse than using the
optimized numerical solution. A difference of this magnitude generally is imperceptible in most appli-
cations. |

10.2 m Point, Line, and Edge Detection 721

of the edge normal (gradient vector). For example, in a 3 X 3 region we can
define four orientations' for an edge passing through the center point of the
region: horizontal, vertical, +45° and —45°. Figure 10.24(a) shows the situation
for the two possible orientations of a horizontal edge. Because we have to
quantize all possible edge directions into four, we have to define a range of di-
rections over which we consider an edge to be horizontal. We determine edge
direction from the direction of the edge normal, which we obtain directly from
the image data using Eq. (10.2-32). As Fig. 10.24(b) shows, if the edge normal is
in the range of directions from —22.5° to 22.5° or from —157.5° to 157.5°, we
call the edge a horizontal edge. Figure 10.24(c) shows the angle ranges corre-
sponding to the four directions under consideration.

Let d,, d», d3, and d, denote the four basic edge directions just discussed for
a 3 X 3 region: horizontal, —45°, vertical, and +45°, respectively. We can for-
mulate the following nonmaxima suppression scheme for a 3 X 3 region cen-
tered at every point (x, y) in a(x, y):

1. Find the direction d that is closest to a(x, y).
2. If the value of M(x, y) is less than at least one of its two neighbors along
dy, let gn(x, y) = 0 (suppression); otherwise, let gy(x, y) = M(x, y)

-157.5° +157.5°
Edge normal 4 y
lﬁ P2|\P3||P|B|Ps3
o 9 | ps || Pa p® | Ps 4
Edge Edge normal
P1 | HBs | Py || P1|Ps|Po (gradient vector)
a
Edge normal -22.5° +22.5°

~1SES +157.5°

+45°%dge

-112.5° +112.5°

<— Vertical edge

—67.5° +67.5°

3 —45°%dge
+225°

Horizontal edge

Keep in mind that every edge has two possible orientations. For example, an edge whose normal is ori-
ented at 0° and an edge whose normal is oriented at 180° are the same horizontal edge.

FIGURE 10.24

(a) Two possible
orientations of a
horizontal edge (in
gray)ina3 X 3
neighborhood.

(b) Range of values
(in gray) of a, the
direction angle of
the edge normal,
for a horizontal
edge. (c) The angle
ranges.of the edge
normals for the
four types of edge
directions in a
3x3
neighborhood.
Each edge
direction has two
ranges, shown in
corresponding
shades of gray.

722 Chapter 10 @ Image Segmentation

where gy(x, y) is the nonmaxima-suppressed image. For example, with refer-
ence to Fig. 10.24(a), letting (x, y) be at ps and assuming a horizontal edge
through ps, the pixels in which we would be interested in Step 2 are p, and pg.
Image gxi(x, y) contains only the thinned edges; it is equal to M(x, y) w1th the
nonmaxima edge pomts suppressed.

The final operation is to threshold gy(x, y) to reduce false edge points. In
Section 10.2.5 we did this using a single threshold, in which all values below
the threshold were set to 0. If we set the threshold too low, there will still be
some false edges (called false positives). If the threshold is set too high, then
actual valid edge points will be eliminated (false negatives). Canny’s algorithm
attempts to improve on this situation by using hysteresis thresholding which, as
we discuss in Section 10.3.6, uses two thresholds: a low threshold, 7;, and a
high threshold, 7;. Canny suggested that the ratio of the high to low threshold
should be two or three to one.

We can visualize the thresholding operation as creating two additional images

gnvu(x, y) = gn(x,y) = Ty (10.2-33)

and
gv(x,y) = gn(x,y) = T, (10.2-34)

where, initially, both gyg(x, y) and gy, (x, y) are set to 0. After thresholding,
gvu(x, y) will have fewer nonzero pixels than gy; (x, y) in general, but all the
nonzero pixels in gyy(x, y) will be contained in gy;(x, y) because the latter
image is formed with a lower threshold. We eliminate from gy;(x, y) all the
nonzero pixels from gyy(x, y) by letting

gnL(x, y) = gnr(x, y) — gnu(x, y) (10.2-35)

The nonzero pixels in gyy(x, y) and gy; (x, y) may be viewed as being “strong”
and “weak” edge pixels, respectively.

After the thresholding operations, all strong pixels in gyx(x, y) are assumed
to be valid edge pixels and are so marked immediately. Depending on the
value of Ty, the edges in gyy(x, y) typically have gaps. Longer edges are
formed using the following procedure:

(a) Locate the next unvisited edge pixel, p, in gyx(x, y).

(b) Mark as valid edge pixels all the weak pixels in gy, (x, y) that are connected
to p using, say, 8-connectivity.

(¢) If all nonzero pixels in gyy(x, y) have been visited go to Step d. Else, re-
turn to Step a.

(d) Set to zero all pixels in gy, (x, y) that were not marked as valid edge pixels.

At the end of this procedure, the final image output by the Canny algorithm is
formed by appending to gyy(x, y) all the nonzero pixels from gy (x, y).

10.2 m Point, Line, and Edge Detection 723

We used two additional images, gnx(x, y) and gy (x, y), to simplify the
discussion. In practice, hysteresis thresholding can be implemented directly
during nonmaxima suppression, and thresholding can be implemented directly
on gn(x, y) by forming a list of strong pixels and the weak pixels connected to
them.

Summarizing, the Canny edge detection algorithm consists of the following
basic steps:

1. Smooth the input image with a Gaussian filter.

2. Compute the gradient magnitude and angle images.

3. Apply nonmaxima suppression to the gradient magnitude image.

4. Use double thresholding and connectivity analysis to detect and link
edges.

Although the edges after nonmaxima suppression are thinner than raw gradi-
ent edges, edges thicker than 1 pixel can still remain. To obtain edges 1 pixel
thick, it is typical to follow Step 4 with one pass of an edge-thinning algorithm
(see Section 9.5.5).

As mentioned earlier, smoothing is accomplished by convolving the input
image with a Gaussian mask whose size, n X n, must be specified. We can use
the approach discussed in the previous section in connection with the Marr-
Hildreth algorithm to determine a value of n. That is, a filter mask generated
by sampling Eq. (10.2-29) so that n is the smallest odd integer greater than or
equal to 60~ provides essentially the “full” smoothing capability of the Gaussian
filter. If practical considerations require a smaller filter mask, then the tradeoff
is less smoothing for smaller values of n.

Some final comments on implementation: As noted earlier in the discussion
of the Marr-Hildreth edge detector, the 2-D Gaussian function in Eq. (10.2-29)
is separable into a product of two 1-D Gaussians. Thus, Step 1 of the Canny
algorithm can be formulated as 1-D convolutions that operate on the rows
(columns) of the image one at a time and then work on the columns (rows) of
the result. Furthermore, if we use the approximations in Egs. (10.2-12) and
(10.2-13), we can also implement the gradient computations required for Step 2
as 1-D convolutions (Problem 10.20).

M Figure 10.25(a) shows the familiar building image. For comparison, Figs.
10.25(b) and (c) show, respectively, the results obtained earlier in Fig. 10.20(b)
using the thresholded gradient and Fig. 10.22(d) using the Marr-Hildreth
detector. Recall that the parameters used in generating those two images were
selected to detect the principal edges while attempting to reduce “irrelevant”
features, such as the edges due to the bricks and the tile roof.

Figure 10.25(d) shows the result obtained with the Canny algorithm using
the parameters 7; = 0.04, Ty = 0.10 (2.5 times the value of the low threshold),
o = 4 and a mask of size 25 X 25, which corresponds to the smallest odd inte-
ger greater than 60. These parameters were chosen interactively to achieve
the objectives stated in the previous paragraph for the gradient and Marr-
Hildreth images. Comparing the Canny image with the other two images, we

EXAMPLE 10.8:
Illustration of the
Canny
edge-detection
method.

724 Chapter 10 m Image Segmentation

ab

cd

FIGURE 10.25

(a) Original image
of size 834 X 1114
pixels, with
intensity values
scaled to the range
[0,1].

(b) Thresholded
gradient of
smoothed image.
(c) Image
obtained using the
Marr-Hildreth
algorithm.

(d) Image
obtained using the
Canny algorithm.
Note the
significant
improvement of
the Canny image
compared to the
other two.

The threshold values
given here should be
considered only in
relative terms.
Implementation of most
algorithms involves
various scaling steps,
such as scaling the range
of values of the input
image to the range [0, 1].
Different scaling
schemes obviously would
require different values
of thresholds from those
used in this example.

EXAMPLE 10.9:
Another
illustration of the
three principal
edge detection
methods
discussed in this
section.

see significant improvements in detail of the principal edges and, at the same
time, more rejection of irrelevant features in the Canny result. Note, for exam-
ple, that both edges of the concrete band lining the bricks in the upper section
of the image were detected by the Canny algorithm, whereas the thresholded
gradient lost both of these edges and the Marr-Hildreth image contains only
the upper one. In terms of filtering out irrelevant detail, the Canny image does
not contain a single edge due to the roof tiles; this is not true in the other two
images. The quality of the lines with regard to continuity, thinness, and
straightness is also superior in the Canny image. Results such as these have
made the Canny algorithm a tool of choice for edge detection. k4]

B As another comparison of the three principal edge-detection methods
discussed in this section, consider Fig. 10.26(a) which shows a 512 X 512 head
CT image. Our objective in this example is to extract the edges of the outer
contour of the brain (the gray region in the image), the contour of the spinal
region (shown directly behind the nose, toward the front of the brain), and the
outer contour of the head. We wish to generate the thinnest, continuous con-
tours possible, while eliminating edge details related to the gray content in the
eyes and brain areas.

Figure 10.26(b) shows a thresholded gradient image that was first smoothed
witha 5 X 5 averaging filter. The threshold required to achieve the result shown
was 15% of the maximum value of the gradient image. Figure 10.26(c) shows the
result obtained with the Marr-Hildreth edge-detection algorithm with a thresh-
old of 0.002, o = 3, and a mask of size 19 X 19 pixels. Figure 10.26(d) was
obtained using the Canny algorithm with 7; = 0.05, T = 0.15 (3 times the

10.2 m Point, Line, and Edge Detection

value of the low threshold), o = 2, and a mask of size 13 X 13, which, as in the
Marr-Hildreth case, corresponds to the smallest odd integer greater than 6o
The results in Fig. 10.26 correspond closely to the results and conclusions in
the previous example in terms of edge quality and the ability to eliminate irrel-
evant detail. Note also that the Canny algorithm was the only procedure capa-
ble of yielding a totally unbroken edge for the posterior boundary of the brain.
It was also the only procedure capable of finding the best contours while elimi-
nating all the edges associated with the gray matter in the original image. H

As might be expected, the price paid for the improved performance of the
Canny algorithm is a more complex implementation than the two approaches
discussed earlier, requiring also considerably more execution time. In some ap-
plications, such as real-time industrial image processing, cost and speed require-
ments usually dictate the use of simpler techniques, principally the thresholded
gradient approach. When edge quality is the driving force, then the Marr-
Hildreth and Canny algorithms, especially the latter, offer superior alternatives.

10.2.7 Edge Linking and Boundary Detection

Ideally, edge detection should yield sets of pixels lying only on edges. In practice,
these pixels seldom characterize edges completely because of noise, breaks in the
edges due to nonuniform illumination, and other effects that introduce spurious
discontinuities in intensity values. Therefore, edge detection typically is followed
by linking algorithms designed to assemble edge pixels into meaningful edges
and/or region boundaries. In this section, we discuss three fundamental ap-
proaches to edge linking that are representative of techniques used in practice.

725

FIGURE 10.26

(a) Original head
CT image of size
512 X 512 pixels,
with intensity
values scaled to
the range [0, 1].
(b) Thresholded
gradient of
smoothed image.
(c) Image
obtained using
the Marr-Hildreth
algorithm.
(d).Image
obtained using
the Canny
algorithm.
(Original image
courtesy of Dr.
David R. Pickens,
Vanderbilt
University.)

726 Chapter 10 ® Image Segmentation

The first requires knowledge about edge points in a local region (e.g.,a 3 X 3
neighborhood); the second requires that points on the boundary of a region be
known; and the third is a global approach that works with an entire edge image.

Local processing

One of the simplest approaches for linking edge points is to analyze the charac-
teristics of pixels in a small neighborhood about every point (x, y) that has been
declared an edge point by one of the techniques discussed in the previous section.
All points that are similar according to predefined criteria are linked, forming an
edge of pixels that share common properties according to the specified criteria.

The two principal properties used for establishing similarity of edge pixels
in this kind of analysis are (1) the strength (magnitude) and (2) the direction
of the gradient vector. The first property is based on Eq. (10.2-10). Let S, de-
note the set of coordinates of a neighborhood centered at point (x, y) in an
image. An edge pixel with coordinates (s, ¢) in S, is similar in magnitude to the
pixel at (x, y) if

|M(s,t) — M(x,y)| < E (10.2-36)

where E is a positive threshold.
The direction angle of the gradient vector is given by Eq. (10.2-11). An edge
pixel with coordinates (s, f) in S,, has an angle similar to the pixel at (x, y) if

la(s, t) — a(x,y)| = A (10.2-37)

where A is a positive angle threshold. As noted in Section 10.2.5, the direction
of the edge at (x, y) is perpendicular to the direction of the gradient vector at
that point.

A pixel with coordinates (s, t) in S,, is linked to the pixel at (x, y) if both
magnitude and direction criteria are satisfied. This process is repeated at every
location in the image. A record must be kept of linked points as the center of
the neighborhood is moved from pixel to pixel. A simple bookkeeping proce-
dure is to assign a different intensity value to each set of linked edge pixels.

The preceding formulation is computationally expensive because all neigh-
bors of every point have to be examined. A simplification particularly well
suited for real time applications consists of the following steps:

1. Compute the gradient magnitude and angle arrays, M(x, y) and a(x, y), of
the input image, f(x, y).

2. Form a binary image, g, whose value at any pair of coordinates (x, y) is
given by:

.y b if M(x,y) > TyAND a(x,y) = A £ T,
8(x.y) = {O otherwise

where Tj, is a threshold, A is a specified angle direction, and + 7}, defines a
“band” of acceptable directions about A.

10.2 ® Point, Line, and Edge Detection = 727

3. Scan the rows of g and fill (set to 1) all gaps (sets of 0s) in each row that do
not exceed a specified length, K. Note that, by definition, a gap is bound-
ed at both ends by one or more 1s. The rows are processed individually,
with no memory between them.

4. To detect gaps in any other direction, 6, rotate g by this angle and apply
the horizontal scanning procedure in Step 3. Rotate the result back by —6.

When interest lies in horizontal and vertical edge linking, Step 4 becomes a
simple procedure in which g is rotated ninety degrees, the rows are scanned,
and the result is rotated back. This is the application found most frequently in
practice and, as the following example shows, this approach can yield good re-
sults. In general, image rotation is an expensive computational process so,
when linking in numerous angle directions is required, it is more practical to
combine Steps 3 and 4 into a single, radial scanning procedure.

M Figure 10.27(a) shows an image of the rear of a vehicle. The objective of this EXAMPLE 10.10:
example is to illustrate the use of the preceding algorithm for finding rectan- ~Edge linking

gles whose sizes makes them suitable candidates for license plates. The forma- "8 soeal

tion of these rectangles can be accomplished by detecting strong horizontal o

and vertical edges. Figure 10.27(b) shows the gradient magnitude image,

M(x, y), and Figs. 10.27(c) and (d) show the result of Steps (3) and (4) of the

algorithm obtained by letting 7}, equal to 30% of the maximum gradient value,

b
det

FIGURE 10.27 (a) A 534 X 566 image of the rear of a vehicle. (b) Gradient magnitude
image. (c) Horizontally connected edge pixels. (d) Vertically connected edge pixels.
(e) The logical OR of the two preceding images. (f) Final result obtained using
morphological thinning. (Original image courtesy of Perceptics Corporation.)

728 Chapter 10 m Image Segmentation

FIGURE 10.28
Illustration of the
iterative
polygonal fit
algorithm.

A =90° T, = 45°, and filling in all gaps of 25 or fewer pixels (approximately
5% of the image width). Use of a large range of allowable angle directions was
required to detect the rounded corners of the license plate enclosure, as well as
the rear windows of the vehicle. Figure 10.27(e) is the result of forming the
logical OR of the two preceding images, and Fig. 10.27(f) was obtained by thin-
ning 10.27(e) with the thinning procedure discussed in Section 9.5.5. As Fig.
10.16(f) shows, the rectangle corresponding to the license plate was clearly de-
tected in the image. It would be a simple matter to isolate the license plate
from all the rectangles in the image using the fact that the width-to-height
ratio of license plates in the U.S. has a distinctive 2:1 proportion.]

Regional processing

Often, the location of regions of interest in an image are known or can be de-
termined. This implies that knowledge is available regarding the regional mem-
bership of pixels in the corresponding edge image. In such situations, we can
use techniques for linking pixels on a regional basis, with the desired result
being an approximation to the boundary of the region. One approach to this
type of processing is functional approximation, where we fit a 2-D curve to the
known points. Typically, interest lies in fast-executing techniques that yield an
approximation to essential features of the boundary, such as extreme points
and concavities. Polygonal approximations are particularly attractive because
they can capture the essential shape features of a region while keeping the rep-
resentation of the boundary (i.e., the vertices of the polygon) relatively simple.
In this section, we develop and illustrate an algorithm suitable for this purpose.

Before stating the algorithm, we discuss the mechanics of the procedure
using a simple example. Figure 10.28 shows a set of points representing an
open curve in which the end points have been labeled A and B. These two

10.2 m Point, Line, and Edge Detection 729

points are by definition vertices of the polygon. We begin by computing the
parameters of a straight line passing through A and B. Then, we compute the
perpendicular distance from all other points in the curve to this line and se-
lect the point that yielded the maximum distance (ties are resolved arbitrar-
ily). If this distance exceeds a specified threshold, T, the corresponding
point, labeled C, is declared a vertex, as Fig. 10.28(a) shows. Lines from A to
C and from C to B are then established, and distances from all points be-
tween A and C to line AC are obtained. The point corresponding to the
maximum distance is declared a vertex, D, if the distance exceeds T'; other-
wise no new vertices are declared for that segment. A similar procedure is
applied to the points between C and B. Figure 10.28(b) shows the result and
Fig. 10.28(c) shows the next step. This iterative procedure is continued until
no points satisfy the threshold test. Figure 10.28(d) shows the final result
which, as you can see, is a reasonable approximation to the shape of a curve
fitting the given points.

Two important requirements are implicit in the procedure just explained.
First, two starting points must be specified; second, all the points must be or-
dered (e.g., in a clockwise or counterclockwise direction). When an arbitrary
set of points in 2-D does not form a connected path (as is typically the case in
edge images) it is not always obvious whether the points belong to a boundary
segment (open curve) or a boundary (closed curve). Given that the points are
ordered, we can infer whether we are dealing with an open or closed curve by
analyzing the distances between points. A large distance between two consec-
utive points in the ordered sequence relative to the distance between other
points as we traverse the sequence of points is a good indication that the curve
is open. The end points are then used to start the procedure. If the separation
between points tends to be uniform, then we are most likely dealing with a
closed curve. In this case, we have several options for selecting the two starting
points. One approach is to choose the rightmost and leftmost points in the set.
Another is to find the extreme points of the curve (we discuss a way to do this
in Section 11.2.1). An algorithm for finding a polygonal fit to open and closed
curves may be stated as follows:

1. Let P be a sequence of ordered, distinct, 1-valued points of a binary
image. Specify two starting points, A and B. These are the two starting ver-
tices of the polygon.

2. Specify a threshold, 7', and two empty stacks, OPEN and CLOSED.

3. If the points in P correspond to a closed curve, put A into OPEN and put
B into OPEN and into CLOSED. If the points correspond to an open
curve, put A into OPEN and B into CLOSED.

4. Compute the parameters of the line passing from the last vertex in
CLOSED to the last vertex in OPEN.

5. Compute the distances from the line in Step 4 to all the points in P whose
sequence places them between the vertices from Step 4. Select the point,
Vinax» With the maximum distance, Dy, (ties are resolved arbitrarily).

6. If D, > T, place Vj,,, at the end of the OPEN stack as a new vertex. Go
to Step 4.

See Section 11.1.1 for an
algorithm that creates or-
dered point sequences.

The use of OPEN and
CLOSED for the stack
names is not related to
open and closed curves.
The stack names indicate
simply a stack to store
final (CLOSED) vertices
or vertices that are in
transition (OPEN).

730 Chapter 10 m Image Segmentation

7. Else, remove the last vertex from OPEN and insert it as the last vertex of
CLOSED.

8. If OPEN is not empty, go to Step 4.

9. Else, exit. The vertices in CLOSED are the vertices of the polygonal fit to
the points in P.

The mechanics of the algorithm are illustrated in the following two examples.

EXAMPLE 10.11: M Consider the set of points, P, in Fig. 10.29(a). Assume that these points
Edge linking belong to a closed curve, that they are ordered in a clockwise direction (note
:;':rgo;fnogi%?fal that some of the points are not adjacent), and that A and B are selected to be
the leftmost and rightmost points in P, respectively. These are the starting ver-
tices, as Table 10.1 shows. Select the first point in the sequence to be the left-
most point, A. Figure 10.29(b) shows the only point (labeled C) in the upper
curve segment between A and B that satisfied Step 6 of the algorithm, so it is
designated as a new vertex and added to the vertices in the OPEN stack. The
second row in Table 10.1 shows C being detected, and the third row shows it
being added as the last vertex in OPEN. The threshold, 7', in Fig. 10.29(b) is ap-
proximately equal to 1.5 subdivisions in the figure grid.
Note in Fig. 10.29(b) that there is a point below line AB that also satisfies
Step 6. However, because the points are ordered, only one subset of the points
between these two vertices is detected at one time. The other point in the
lower segment will be detected later, as Fig. 10.29(e) shows. The key is always
to follow the points in the order in which they are given.

L] cl
r i 2 NG i
b o L,_v__él o y A1k T O e ‘/ o)
| NoB 4] o

l)—
o
2l

C

o

Ve
<
O

>
4

=

JES
o

O
—C
O
©
i
4
Pon
gy
O

D2l

chiipodie [oghd
NI |
N

I P 4
Blla) 1. Bllal/]
e 2 N el

i i |
i & i |

(P, Sy .

@

<\;
B {}
O . N S5 i
O

Y

S
o400
13
>

/

H—O—1-
N\

Sl

s 8l o L.

FIGURE 10.29 (a) A set of points in a clockwise path (the points labeled A and B were chosen as the starting
vertices). (b) The distance from point C to the line passing through A and B is the largest of all the points
between A and B and also passed the threshold test, so C is a new vertex. (d)—(g) Various stages of the
algorithm. (h) The final vertices, shown connected with straight lines to form a polygon. Table 10.1 shows
step-by-step details.

10.2 ® Point, Line, and Edge Detection 731

S shan
>
ks
I

Mmoo ®

2
2
|
|

B,
B
4
B,
B,
B

B\
B

£
)

c
e
4C
3
C

x>
SIS
>.}

-

Table 10.1 shows the individual steps leading to the solution in Fig. 10.29(h).
Four vertices were detected, and the figure shows them connected with straight
line segments to form a polygon approximating the given boundary points. Note
in the table that the vertices detected, B, C, A, D, B are in the counterclockwise
direction, even though the points were followed in a clockwise direction to gen-
erate the vertices. Had the input been an open curve, the vertices would have
been in a clockwise order. The reason for the discrepancy is the way in which the
OPEN and CLOSED stacks are initialized. The difference in which stack
CLOSED is formed for open and closed curves also leads to the first and last
vertices in a closed curve being repeated. This is consistent with how one would
differentiate between open and closed polygons given only the vertices.]

B Figure 10.30 shows a more practical example of polygonal fitting. The
input image in Fig. 10.30(a) is a 550 X 566 X-ray image of a human tooth
with intensities scaled to the interval [0, 1]. The objective of this example is
to extract the boundary of the tooth, a process useful in areas such as match-
ing against a database for forensics purposes. Figure 10.30(b) is a gradient
image obtained using the Sobel masks and thresholded with 7 = 0.1 (10% of
the maximum intensity). As expected for an X-ray image, the noise content is
high, so the first step is noise reduction. Because the image is binary, mor-
phological techniques are well suited for this purpose. Figure 10.30(c) shows
the result of majority filtering, which sets a pixel to 1 if five or more pixels in
its 3 X 3 neighborhood are 1 and sets the pixel to 0 otherwise. Although the
noise was reduced, some noise points are still clearly visible. Figure 10.30(d)
shows the result of morphological shrinking, which further reduced the noise
to isolated points. These were eliminated [Fig. 10.30(e)] by morphological fil-
tering in the manner described in Example 9.4. At this point, the image con-
sists of thick boundaries, which can be thinned by obtaining the
morphological skeleton, as Fig. 10.30(f) shows. Finally, Fig. 10.30(g) shows the
last step in preprocessing using spur reduction, as discussed in Section 9.5.8.

Next, we fit the points in Fig. 10.30(g) with a polygon. Figures 10.30(h)—(j)
show the result of using the polygon fitting algorithm with thresholds equal to
0.5%, 1%, and 2% of the image width (T = 3, 6, and 12). The first two results
are good approximations to the boundary, but the third is marginal. Excessive
jaggedness in all three cases clearly indicates that boundary smoothing is

TABLE 10.1
Step-by-step
details of the
mechanics in
Example 10.11.

EXAMPLE 10.12:
Polygonal fitting
of an image
boundary.

732 Chapter 10 m Image Segmentation

d
h
1

FIGURE 10.30 (a) A 550 X 566 X-ray image of a human tooth. (b) Gradient image. (c) Result of majority
filtering. (d) Result of morphological shrinking. (¢) Result of morphological cleaning, (f) Skeleton. (g) Spur
reduction. (h)—(j) Polygonal fit using thresholds of approximately 0.5%, 1%, and 2% of image width (7 = 3,
6, and 12). (k) Boundary in (j) smoothed with a 1-D averaging filter of size 1 X 31 (approximately 5% of
image width). (I) Boundary in (h) smoothed with the same filter.

.

-0 0

b
!
j

s o

required. Figures 10.30(k) and (1) show the result of convolving a 1-D averag-
ing mask with the boundaries in (j) and (h), respectively. The mask used was a
1 X 31 array of 1s, corresponding approximately to 5% of the image width. As
expected, the result in Fig. 10.30(k) again is marginal in terms of preserving
important shape features (e.g., the right side is severely distorted). On the
other hand, the result in Fig. 10.30(1) shows significant boundary smoothing
and reasonable preservation of shape features. For example, the roundness of
the left-upper cusp and the details of the right-upper cusp were preserved with
reasonable fidelity. l

The results in the preceding example are typical of what can be achieved with
the polygon fitting algorithm discussed in this section. The advantage of this

10.2 ® Point, Line, and Edge Detection

algorithm is that it is simple to implement and yields results that generally are
quite acceptable. In Section 11.1.3, we discuss a more sophisticated procedure
capable of yielding closer fits by computing minimum-perimeter polygons.

Global processing using the Hough transform

The methods discussed in the previous two sections are applicable in situations
where knowledge about pixels belonging to individual objects is at least partially
available. For example, in regional processing, it makes sense to link a given set of
pixels only if we know that they are part of the boundary of a meaningful region.
Often, we have to work with unstructured environments in which all we have is
an edge image and no knowledge about where objects of interest might be. In
such situations, all pixels are candidates for linking and thus have to be accepted
or eliminated based on predefined global properties. In this section, we develop
an approach based on whether sets of pixels lie on curves of a specified shape.
Once detected, these curves form the edges or region boundaries of interest.

Given n points in an image, suppose that we want to find subsets of these
points that lie on straight lines. One possible solution is to find first all lines de-
termined by every pair of points and then find all subsets of points that are close
to particular lines. This approach involves finding n(n — 1)/2 ~ n’ lines and
then performing (n)(n(n — 1))/2 ~ n® comparisons of every point to all lines.
This is a computationally prohibitive task in all but the most trivial applications.

Hough [1962] proposed an alternative approach, commonly referred to as the
Hough transform. Consider a point (x;, y;) in the xy-plane and the general equa-
tion of a straight line in slope-intercept form, y; = ax; + b. Infinitely many lines
pass through (x;, y;), but they all satisfy the equation y; = ax; + b for varying val-
ues of a and b. However, writing this equation as b = —x;a + y, and considering
the ab-plane (also called parameter space) yields the equation of a single line for a
fixed pair (x;, y;). Furthermore, a second point (x;, y;) also has a line in parameter
space associated with it, and, unless they are parallel, this line intersects the line as-
sociated with (x;, y;) at some point (a’, b"), where a’ is the slope and b’ the inter-
cept of the line containing both (x;, y;) and (x;, y;) in the xy-plane. In fact, all the
points on this line have lines in parameter space that intersect at (a’, b"). Figure 10.31
illustrates these concepts.

In principle, the parameter-space lines corresponding to all points (x, yx) in
the xy-plane could be plotted, and the principal lines in that plane could be found
by identifying points in parameter space where large numbers of parameter-space
lines intersect. A practical difficulty with this approach, however, is that a

’

o>

b= —-xia +y;

+
|
|
|

(xi, y2) :

|

(X/~)’/)
b=—-xa+y

FIGURE 10.31
(a) xy-plane..

733

(b) Parameter

space.

734 Chapter 10 @ Image Segmentation

(the slope of a line) approaches infinity as the line approaches the vertical direc-
tion. One way around this difficulty is to use the normal representation of a line:

xcosf + ysinf = p (10.2-38)

Figure 10.32(a) illustrates the geometrical interpretation of the parameters
p and 6. A horizontal line has § = 0°, with p being equal to the positive x-
intercept. Similarly, a vertical line has = 90°, with p being equal to the posi-
tive y-intercept, or § = —90°, with p being equal to the negative y-intercept.
Each sinusoidal curve in Figure 10.32(b) represents the family of lines that
pass through a particular point (xy, y,) in the xy-plane. The intersection point
(p', 0") in Fig. 10.32(b) corresponds to the line that passes through both (x;, y;)
and (x;, y;) in Fig. 10.32(a).

The computational attractiveness of the Hough transform arises from sub-
dividing the pf parameter space into so-called accumulator cells, as Fig.
10.32(c) illustrates, where (pmin, Pmax) and (Omin, Omax) are the expected ranges
of the parameter values: —90° < 6 =< 90° and —D =< p < D, where D is the
maximum distance between opposite corners in an image. The cell at coordi-
nates (i, j), with accumulator value A(Z, j), corresponds to the square associat-
ed with parameter-space coordinates (p;, 8;). Initially, these cells are set to zero.
Then, for every non-background point (x;, y;) in the xy-plane, we let 6 equal
each of the allowed subdivision values on the §-axis and solve for the corre-
sponding p using the equation p = x; cos § + y, sin 6. The resulting p values
are then rounded off to the nearest allowed cell value along the p axis. If a
choice of 6, results in solution p,, then we let A(p, q) = A(p,q) + 1. At the
end of this procedure, a value of P in A(i, j) means that P points in the xy-
plane lie on the line x cos 6; + ysin 6; = p;. The number of subdivisions in the
po-plane determines the accuracy of the colinearity of these points. It can be
shown (Problem 10.24) that the number of computations in the method just
discussed is linear with respect to n, the number of non-background points in
the xy-plane.

y L ’ 'omin: : :OT : :9..,": 0
xcos0 Hysing=p Pmin] 1 v 17 v v
£ o s i
. et et ot
0 o & L
S e St S SR
@) e T 455 TR 1
i A ST RN
(i i) R ! Bty TR R S
xicosf +ysind=p = [TTTTTTToEomosmossosoeess
x p p
abic

FIGURE 10.32 (a) (p, 6) parameterization of line in the xy-plane. (b) Sinusoidal curves in the p#-plane; the
point of intersection (p’, 8") corresponds to the line passing through points (x;, y;) and (x;, y ;) in the xy-plane.
(c) Division of the p6-plane into accumulator cells.

10.2 m Point, Line, and Edge Detection 735

M Figure 10.33 illustrates the Hough transform based on Eq. (10.2-38).
Figure 10.33(a) shows an image of size 101 X 101 pixels with five labeled
points, and Fig. 10.33(b) shows each of these points mapped onto the
pO-plane using subdivisions of one unit for the p and 6 axes. The range of 8
values is +£90°, and the range of the p axis is i\/iD, where D is the dis-
tance between corners in the image. As Fig. 10.33(c) shows, each curve has
a different sinusoidal shape. The horizontal line resulting from the map-
ping of point 1 is a special case of a sinusoid with zero amplitude.

The points labeled A (not to be confused with accumulator values) and B in
Fig. 10.33(b) show the colinearity detection property of the Hough transform.

EXAMPLE 10.13:
An illustration of
basic Hough
transform
properties.

a

ﬁbx,
FIGURE 10.33
(a) Image of size
101 X 101 pixels,
containing five
points.
(b) Corresponding
parameter space.
(The points in (a)
were enlarged to
make them easier
to see.)

736 Chapter 10 ® Image Segmentation

Point A denotes the intersection of the eurves corresponding to points 1,3, and
5 in the xy image plane. The location of point A indicates that these three
points lie on a straight line passing through the origin (p = 0) and oriented at
45° [see Fig. 10.32(a)]. Similarly, the curves intersecting at point B in the para-
meter space indicate that points 2, 3, and 4 lie on a straight line oriented at —45°,
and whose distance from the origin is p = 71 (one-half the diagonal distance
from the origin of the ima<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>